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The problem of grain boundary diffusion of radiosotopes is analysed by the finite element 
method for a plane semiinfinite situation. Mathematically this problem consists of solving the 
time-dependent linear diffusion equation with a fixed Dirichlet condition at the finite 
rectilinear boundary. But peculiarities arise because of the existence of a thin straight region 
(the grain boundary) of about lo-’ cm width separating two grains, whose conductivity is 
five orders of magnitude greater than that of the metal grains. Reasonable solutions were 
obtained by using quadrilateral Lagrange elements for the grains on the central finite region 
and one-dimensional linear elements for the grain boundary. The main purpose of the paper is 
to establish the underlying ideas for a natural finite element formulation of this kind of 
problem. based on a variational approach. 

1. GENERALITIES 

We wish to present some simple ideas related to the variational formulation of the 
problem of radioisotope penetration in metals. See, for example, [ 1,2] and references 
quoted here. Such radioisotope diffusion is governed by the same laws as a linear 
time-dependent heat conduction problem, with concentrations instead of temperatures. 

Suppose a semi-infinite metal extended in the semiplane x > 0 (Fig. 1). We 
distinguish two metal grains a and /3 with different diffusivities K, and K,, respec- 
tively, for y < - a and y > + a. The region x > 0, and -a < y < +a is designated as 
the “grain boundary” or “interface boundary,” and characterized by the diffusivity 
Ki. Under the constant concentration source hypothesis [l] the formulation of this 
idealized model of grain boundary diffusion, consists of assuming a constant 
Dirichlet condition c = 100 (c = concentration of radioisotope) at x = 0 and then 
adopting the usual Fourier law in the heterogeneous material shown in Fig. 1. A 
Neumann-type condition is imposed at infinity for x > 0. 

For computational purposes it suffices to consider a finite rectangular region 
instead of the semi-infinite one. But this is just the case for diffusion experiments 
where the specimens have rectangular form and dimensions of the order indicated in 
Fig. 1. Furthermore, it is assumed that the problem is independent of the coordinate 
2. 
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REGION OF INTEREST 

FIG. 1. Schematic presentation of the problem’s geometry. 

Up to the moment, this is a classical time-dependent and heterogeneous two- 
dimensional problem. Nevertheless difftculties arise when considering the extremely 
small value of a (~10~~~; p = micron) in comparison with the typical dimension of 
the specimen; and the high value of Ki (zz - lo4 p*/seg) also in relation to the values 
K, E -1.7 x 10-l p*/seg and K, = -5 X 10-l p*/seg. The differences are of seven 
and five orders of magnitude, respectively. 

Mathematically the problem could be stated as follows: the limit of the classical 
formulation when 

U-10 

Ki -+-co 
(1) 

but 

UK, + const # 0 (2) 

The latter is the same as saying that the one-dimensional conductivity of the grain 
boundary y = 0 subsists, making the problem of interest. 

Analytical solutions for the symmetric case (K, = K,) have been known for a long 
time [ 1 ] but they are not easy to handle. The possibility of having numerical models 
available is then of special interest. 

2. SOME MATHEMATICAL ASPECTS 

The variational formulation of the classical problem for the source-free case is 

(3) 
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for every u belonging to an appropriate functional space. The following notation is 
used: 

(4) 

Inspired by [ 1 ] we now develop the solution c(x, y, t) in power series of y for 
--a < y < a and proceed to the integration. 

Admitting the continuity of the solution and a reasonable regularity of it for 
y # *a, we finally obtain 

a@, u) = - j:: jam K, --+-- dxdy (g ;I ;; ;;) 
- jo+m jornKo (gg+g) dxdy 

I 

m 
- 

0 
2aKi g 2 dx 

+ e(U*Ki) + fl(a”) 

and 

(5) 

For the actual problem, the variational formulation is simply obtained by the 
application of the limiting process (1) and (2) to expressions (5) and (6) to be used in 
(3). In this way 

- 
I ao ZaK,g$dx 

($+)= jmoj 
O” ac 

I 
m ac 

--oo o pdxdy+k o gdx 

(7) 

It is noted that formally the last term of the second expression should be dropped. 
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We have kept it because even with a very small, in the first instants of the 
phenomenon &/at takes high values so that this term should, in principle, be 
conserved. Nevertheless, the numerical experiences have shown that its contribution is 
not significant, at least for the particular cases solved. 

For the expected solutions, that is, those continuous and sufficiently regular for 
y # 0, the variational formulation (3), (7) yields (through the classical procedure) the 
set of well-known equations [2]: 

g+Kvc=O for y#O (K=K,,K,) 

Pg+o$=#(x) for y = 0 

where V stands for the gradient operator, p = 2a, u = 2aK, and 

(8) 

(9) 

Whipple’s equations [ 1 ] are immediately recovered for the symmetric case. 
We conclude this section by noting that the variational formulation (3), (7) should 

be defined for appropriate functional spaces of functions with finite trace over y = 0. 

3. FINITE ELEMENT APPROXIMATION 

This is a direct consequence of the discretized interpretation of (3) and (7). The 
two-dimensional terms of (7) require plane elements and the single integral ones, the 
introduction of one-dimensional elements at y = 0. For the former we adopted the 
usual quadrilateral isoparametric Lagrange elements with bilinear interpolating 
functions, and for the latter, linear one-dimensional elements. The mesh is shown in 
Fig. 2. It was automatically generated with the program KUBIK [5]. 

In the first calculations the region was covered to infinity by infinite elements with 
decay rep, where r is roughly the distance (radius) to the central part. Later it was 
observed that they produce no significant changes in the solution, so they were finally 
abandoned. 

The computer program contains sparse matrix subroutines [3], uses the 
Crank-Nicolson time discretization scheme, and the incremental algorithm for the 
time steps [4]. 
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FIG. 2. Finite element mesh. The one-dimensional elements stay on the line y = 0. Points where a 
comparison was made with the exact solution are indicated. 

TABLE I 

Comparsion’ Between the Finite Element Solution (FEM) and the Exact Solution (Whipple, 1954) 
for the symmetric Problem at the Points Indicated in Fig. 2. 

5h 
FEM - 6.520 38.06 78.34 48.47 

REL. - 0.917 0.991 1.000 0.997 

10h 
FEM - 16.72 54.11 84.75 60.26 

REL. 0.983 0.998 1.000 0.999 

15h 
FEM 0.997 24.65 62.08 87.55 66.29 

REL. 0.897 0.994 0.999 1.000 1.000 

20h 
FEM 2.258 30.73 67.00 89.20 70.12 

REL. 0.936 0.997 1.000 1.000 1.000 

’ The comparison is represented by the quotient (REL.) between the FEM solution and the exact one 
when the value of the solution is greater than 1.0. 
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4. NUMERICAL RESULTS 

Two examples were solved. The first one is a comparison with the exact solution of 
Whipple [l] for K, = K, = -0.1 $/seg, Ki = -lo4 $/seg, and a = 2.5 X 1O-4 P). 
The results (see Table I) show a very satisfactory agreement between the FEM 
solutions and the exact one except, of course, for low values of the solution (initial 

FIG. 3. Lines of equal concentration for different times: 1 h, 5 h, 10 h, 20 h, 30 h, 40 h. Line 
separation is 10. 
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TIME= 36000.0 LlNES SEPARATION-5 TEMPORAL CICLE 19 

FIG. 4. Similar problem, showing the “cusp effect,” for a value of Ki an order of magnitude greater 
than for the preceding case. Time: 10 h. 

times or remote spatial points). For these values, as usual, the relative numerical 
errors are much greater than for the higher values. 

The second case is one of physical interest (K, = -1.7 x 10-l ,u2/seg, 
K, = -5.0 x 10-r ,u’/seg, Ki = -lo4 p2/seg and u = 2.5 x 10m4 ,D). The results, 
shown in Fig. 3, do not make at all evident the importance of the interfacial region 
(“cusp effect”). To exhibit this effect more clearly, an additional, calculation was 
performed with the same data, but now with the boundary grain conductivity raised 
to the (perhaps unphysical) value Ki = -1.3 x lo5 ,u*/sec, an order of magnitude 
greater than the preceding case (see Fig. 4). The plotted outputs show a quite 
reasonable behaviour for the lines of equal concentration at different times. The cusp 
effect is very important for the first case (Whipple’s solution) but the equal concen- 
tration lines are not included in the paper. 

5. DISCUSSION 

A variational formulation has been described for the problem of a highly 
conducting one-dimensional channel immersed in a less conducting two-dimensional 
medium, leading in a natural way to a discretization using one-dimensional and two- 
dimensional elements, respectively. 

The underlying idea (and the variational formulation (3), (7)) can immediately be 
extended to linear and nonlinear problems of greater dimension (conducting lines or 
surfaces in three-dimensional media, for example). Also, no conceptual difficulty 
arises if the conducting channels form general irregular curved meshes. Nevertheless 
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for such peculiar cases, the usual formulation through differential equations becomes 

essentially obscure. 
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